Trigonometric wavelets for Hermite interpolation

نویسنده

  • Ewald Quak
چکیده

The aim of this paper is to investigate a multiresolution analysis of nested subspaces of trigonometric polynomials. The pair of scaling functions which span the sample spaces are fundamental functions for Hermite interpolation on a dyadic partition of nodes on the interval [0, 2π). Two wavelet functions that generate the corresponding orthogonal complementary subspaces are constructed so as to possess the same fundamental interpolatory properties as the scaling functions. Together with the corresponding dual functions, these interpolatory properties of the scaling functions and wavelets are used to formulate the specific decomposition and reconstruction sequences. Consequently, this trigonometric multiresolution analysis allows a completely explicit algorithmic treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Solution of a Second-order Nonlinear Differential Equation with Neumann Boundary Conditions Using Trigonometric Scaling Functions for Hermite Interpolation

A numerical technique for solving a second-order nonlinear Neumann problem is presented. The authors approach is based on trigonometric scaling function on [0, 2π] which is constructed for Hermite interpolation. Two test problems are presented and errors plots show the efficiency of the proposed technique for the studied problem. 2000 Mathematics Subject Classification: 65L10, 65L60.

متن کامل

NEW ALGORITHM , S FOR POLYNOMIAL AND TRIGONOMETRIC INTERPOLATION ON PARALLEL COMPUTERS by Ilan Bar -

An interpolation polynomial of order N is constructed from p indepen­ dent subpolynomials of order n '" Nip. Each such subpolynomial is found independently and in parallel. Moreover, evaluation of the polynomial at any given point is done independently and in parallel, except for a final step of summation of p elements. Hence, the algorithm has almost no commu­ ,:.. nication overhead and can be...

متن کامل

Algebraic-Trigonometric Pythagorean-Hodograph curves and their use for Hermite interpolation

In this article we define a new class of Pythagorean-Hodograph curves built-upon a sixdimensional mixed algebraic-trigonometric space, we show their fundamental properties and compare them with their well-known quintic polynomial counterpart. A complex representation for these curves is introduced and constructive approaches are provided to solve different application problems, such as interpol...

متن کامل

Trigonometric Wavelets and the Uncertainty Principle

The time-frequency localization of trigonometric wavelets is discussed. A good measure is provided by a periodic version of the Heisenberg uncertainty principle. We consider multiresolution analyses generated by de la Vall ee Poussin means of the Dirichlet kernel. For the resulting interpolatory and orthonormal scaling functions and wavelets, the uncertainty product can be bounded from above by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 1996